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Transcriptome and metabolome

analyses revealed that narrowband
280 and 310 nm UV-B induce
distinctive responses in Arabidopsis

Tomohiro Tsurumoto®?, Yasuo Fujikawa?, Yushi Onoda?, Yukari Ochi?, Daisaku Ohta® &
Atsushi Okazawa'™

In plants, the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) perceives UV-B and induces UV-B
responses. UVR8 absorbs a range of UV-B (260-335 nm). However, the responsiveness of plants to
each UV-B wavelength has not been intensively studied so far. Here, we performed transcriptome and
metabolome analyses of Arabidopsis using UV light emitting diodes (LEDs) with peak wavelengths of
280 and 310 nm to investigate the differences in the wavelength-specific UV-B responses. Irradiation
with both UV-LEDs induced gene expression of the transcription factor ELONGATED HYPOCOTYL 5
(HY5), which has a central role in the UVR8 signaling pathway. However, the overall transcriptomic
and metabolic responses to 280 and 310 nm UV-LED irradiation were different. Most of the known
UV-B-responsive genes, such as defense-related genes, responded only to 280 nm UV-LED irradiation.
Lipids, polyamines and organic acids were the metabolites most affected by 280 nm UV-LED
irradiation, whereas the effect of 310 nm UV-LED irradiation on the metabolome was considerably
less. Enzymatic genes involved in the phenylpropanoid pathway upstream in anthocyanin
biosynthesis were up-regulated only by 280 nm UV-LED irradiation. These results revealed that the
responsivenesses of Arabidopsis to 280 and 310 nm UV-B were significantly different, suggesting that
UV-B signaling is mediated by more complex pathways than the current model.

The sunlight that falls on the earth contains various wavelengths. Plants use the light not only as an energy source,
but also as signals for optimizing growth and development. Light is classified according to the wavelengths it
contains, and the shortest-wavelength component of the sunlight that reaches the ground is UV. UV is further
divided into three bands, UV-A (315-400 nm), UV-B (280-315 nm), and UV-C (100-280 nm). UV-C is com-
pletely absorbed by the oxygen molecules in the atmosphere and the stratospheric ozone. UV-B is also partially
absorbed by the ozone, but some of it falls on the ground. Therefore, UV-B is the light that possesses the shortest
wavelength and accordingly the highest energy in the sunlight that reaches the ground.

Because nucleic acids and proteins, have absorption peaks near 260 and 280 nm, respectively, UV-B directly
causes damage to the molecules. UV-B also produces reactive oxygen species (ROS) that cause damage to DNAs,
proteins, and lipids, and induce many processes like programmed cell death (PCD), abiotic stress responses and
pathogen defense!?. Plants have adapted to this harmful UV-B during their evolution, acquiring plant-specific
UV-B responses>*. As a typical example of the UV-B response of plants, an increase in the contents of phenolic
compounds that absorb UV-B, such as anthocyanins, has been reported>*.

To explore wavelength dependence of the plant UV-B response, changes in the UV-B response of Arabidopsis
to the light with or without short wavelengths of UV-B were tracked using whole-genome expression analysis’.
UV lamps emitting broad light from 280 to 380 nm and three types of wavelength-cut filter glasses that cut light
below 295, 305, and 327 nm, respectively, were used in their experiment’. The results suggest that there are dif-
ferent UV-B recognition and signaling pathways for long and short wavelengths of UV-B’.

The UV-B receptor UV RESISTANCE LOCUS 8 (UVRS) has been proposed as one of the factors mediating
the transcriptional activation of ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor
family, in response to UV-B*%%°_ UV-B signaling requires monomerization of UVRS8, which forms a homodimer
in the ground state®. The absorption spectrum of UVRS has a peak at 280 nm and extends from at least 250 nm
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to around 500 nm'’. Monomerization of UVR8 occurs under UV in the range from 260 to 335 nm'*!'. UVR8
monomers interact with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase, and
inhibit ligase activity of COP1*%. Inhibition of the ubiquitin ligase activity of COP1 stabilizes HY5 that inhibits
hypocotyl growth and lateral root development and promotes pigment accumulation®!2. HY5 has a central role
in UV-B signaling, regulating the expression of about half of UVR8-induced genes, including defense-related
and anthocyanin biosynthetic genes>!*.

Metabolomic analysis of the UV-B response in Arabidopsis showed increased amounts of phenolic com-
pounds, such as sinapoyl malate, and quercetin- and kaempferol-glycosides'®. Reprogramming of both central
and specialized metabolisms in response to UV-B was also shown with increases in sugars, amino acids, and
organic acids in the tricarboxylic acid (TCA) cycle, and phenolic compounds, including anthocyanins’®. Antho-
cyanins, which act as UV sunscreen in plants, are synthesized through the biosynthetic pathways of phenylpro-
panoids and flavonoids. The biosynthesis of phenylpropanoids starts from L-phenylalanine, which is synthesized
by arogenate dehydrotase (ADT)". p-Coumaroyl CoA, a precursor of flavonoids biosynthesis, is produced by
L-phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL)
in the phenylpropanoid pathway'®. Chalcone synthase (CHS), chalcone isomerase (CHI), flavonol 3-hydroxy-
lase (F3H) and flavonol 3'-hydroxylase (F3'H) are main enzymes in flavonoid biosynthesis. Dihydroflavonol-
4-reductase (DFR) and leucoanthocyanidin dioxygenase/anthocyanidin synthase (LDOX/ANS) are involved in
synthesis of the basic skeleton of anthocyanin, and multiple anthocyanin glycosyltransferases (AGTs) modify
the sugar moieties of anthocyanins'®. Expression of these enzymatic genes is regulated by several classes of tran-
scription factors, such as MYB-bHLH-WDR (MBW) complexes'®~??, and coregulatory Mediator complexes®*?*.
Flavonoid biosynthesis is up-regulated under UV-B through regulation of these transcription factors mediated
by UVRS signaling®>?>%.

Previous studies on plant UV-B responses used broadband (BB) UV lamps with peaks around 310 nm and
ranging from 280 to 380 nm, and narrowband (NB) UV lamps with a peak wavelength of 310 nm**-1%?’, To our
knowledge, the responsiveness of plants to each UV-B wavelength shorter than 310 nm has not been intensively
studied so far. Here, we performed transcriptome and metabolome analyses of Arabidopsis using UV light-
emitting diodes (LEDs) with peak wavelengths of 280 and 310 nm to compare the UV-B responses under the NB
UV-B light at 280 and 310 nm. Our results showed that the responsivenesses of Arabidopsis to 280 and 310 nm
UV-B were significantly different.

Results

Transcriptomic response to narrowband UV-B. In this study, 280 nm UV-LED with a peak wave-
length of 280 nm, a half-width of 10 nm, and a range from 260 to 310 nm and 310 nm UV-LED with a peak
wavelength of 310 nm, a half-width of 10 nm, and a range from 290 to 340 nm were used for irradiation (Supple-
mentary Fig. S1). The photon flux density on the irradiated surface was adjusted to 2.5 pmol m™2s™!. Arabidopsis
grown under long-day conditions (16-h light/8-h dark) for 14 days at 23 °C was used for the irradiation experi-
ments. The irradiation conditions were: (i) 45 min irradiation with the 280 nm UV-LED (280-0d); (ii) 45 min
irradiation with the 310 nm UV-LED (310-0d); (iii) 45 min irradiation with the 280 nm UV-LED followed by
incubation in the dark for two days (280-2d); and (iv) 45 min irradiation with the 310 nm UV-LED followed by
incubation in the dark for two days (310-2d). For the control, plants without UV-B irradiation (C-0d) and plants
incubated in the dark for two days without UV-B irradiation (C-2d) were used.

To investigate the responses to NB UV-B, the transcriptome in Arabidopsis irradiated with the 280 or
310 nm UV-LED was analyzed using RNA-Seq. Welch’s ¢-test was applied to evaluate the significant difference
(P-value <0.05). The g-value indicating false discovery rate (FDR) obtained by the Benjamini-Hochberg method
is shown in the Supplementary Tables S1-S4. It was revealed that the expression of much fewer genes was affected
by 310 nm UV-LED irradiation, especially in 310-2d, compared with 280 nm UV-LED irradiation. In comparison
with the control, the numbers of differentially expressed genes (DEGs) were 3386, 1277, 3948, and 96 in 280-0d,
310-0d, 280-2d, and 310-2d, respectively (Fig. 1 and Supplementary Tables S5). Moreover, DEGs in Arabidopsis
under 280 and 310 nm UV-LED were not closely overlapped as expected in terms of plant UV-B response. The
numbers of commonly up-regulated DEGs between 280-0d and 310-0d and between 280-2d and 310-2d were
261 and 15, respectively, and the numbers of commonly down-regulated DEGs between 280-0d and 310-0d and
between 280-2d and 310-2d were 487 and 1, respectively (Fig. 1b, Supplementary Tables S6 and S7).

Gene ontology term enrichment analysis of DEGs. To investigate the underlying functions of the
DEGs in the responses to 280 and 310 nm UV-LED irradiation, gene ontology (GO) term enrichment analysis
was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID), version
6.82%%_ Enriched terms were totally different between the DEGs under 280 and 310 nm UV-LED irradiation
in accordance with their slight overlapping. Biotic or abiotic stress-related terms, such as ‘response to chitin,
‘defense response, ‘defense response to bacterium;, and ‘response to salicylic acid’ were enriched in up-regulated
DEGs in 280-0d and 280-2d. In contrast, the term ‘response to salicylic acid’ was enriched in down-regulated
DEGs in 310-0d, and other stress-related terms were not enriched under 310 nm UV-LED irradiation. Auxin
related genes in ‘auxin-activated signaling pathway’ and ‘response to auxin’ were down-regulated under 280 nm
UV-LED irradiation. Genes related to photosynthesis and responses to light stimulus and far red light were
down-regulated in 280-2d, whereas ‘response to light stimulus’ was enriched in DEGs in 310-0d. There was no
enriched term in DEGs in 310-2d (Fig. 1¢ and Supplementary Table S8).

In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, up-regulated DEGs were most enriched
in ’plant-pathogen interaction’ and ’biosynthesis of secondary metabolites’ in 280-0d and 280-2d, respectively.
The term ‘phenylpropanoid biosynthesis’ was also enriched in DEGs in 280-2d. The terms related to lipid
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Figure 1. Overall description of transcriptome data. (a) Comparison of up-regulated and down-regulated
numbers of DEGs under 280 and 310 nm UV. Welch’s ¢-test was applied for comparison of UV-irradiated
samples with control, and a gene with a P-value less than 0.05 and a two-fold change was considered as a DEG.
(b) Venn diagrams illustrating the shared and unique up-regulated and down-regulated DEGs between samples
under 280 and 310 nm UV-B. (c) Gene ontology enrichment analysis of up-regulated and down-regulated DEGs
in biological processes and Kyoto Encyclopedia of Genes and Genomes pathway using DAVID ver. 6.8. Top five
terms were selected according to the P-values when more than five terms were enriched.
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Figure 2. Overall description of metabolome data. (a) Comparison of increased and decreased numbers of
metabolites under 280 and 310 nm UV annotated by GC-MS. Welch’s ¢-test was applied for comparison of
UV-irradiated samples with control, and a metabolite with a P-value less than 0.05 was considered significantly
changed. (b) Comparison of increased and decreased numbers of metabolites under 280 and 310 nm UV
annotated by LC-MS. Welch’s t-test was applied for comparison of UV-irradiated samples with control, and
metabolite with a P-value less than 0.05 was considered significantly changed. lipid-positive, lipids annotated in
the positive ion mode; lipid-negative, lipids annotated in the negative ion mode. (c) Venn diagrams illustrating
the shared and unique increased and decreased metabolites between samples under 280 and 310 nm UV-B.

metabolism, such as ‘a-linolenic acid metabolism, and ‘fatty acid degradation’ were characteristically enriched
under 280 nm UV-LED irradiation, whereas ‘fatty acid elongation’ and ‘cutin, suberine and wax biosynthesis’ were
down-regulated in 280-0d. Down-regulated DEGs were most enriched in *plant hormone signal transduction,
’ribosome biogenesis in eukaryotes, and "photosynthesis’ in 280-0d, 310-0d, and 280-2d, respectively. There was
no enriched term in up-regulated DEGs in 310-0d and 310-2d, and in down-regulated DEGs in 310-2d (Fig. 1c
and Supplementary Table S8).

Effect of narrowband UV-B on metabolome. The metabolome in 280-2d and 310-2d were analyzed
using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-
MS) to investigate the effect of NB UV-B on the Arabidopsis metabolism. Welch’s t-test was applied to evaluate
the significant difference (P-value < 0.05). The g-value indicating false discovery rate (FDR) obtained by the Ben-
jamini-Hochberg method is shown in the Supplementary Tables S9 and S10. Overall, fewer metabolic changes
were confirmed under 310 nm UV-LED irradiation as transcriptomic responses. GC-MS analysis showed that
the amounts of 19 hydrophilic metabolites and seven fatty acids in 280-2d, and only two fatty acids in 310-2d,
which were also increased in 280-2d, were increased in comparison with the control, whereas the amounts of
two hydrophilic metabolites were decreased in 280-2d (Fig. 2a,c and Supplementary Table S11).

In LC-MS lipid analysis, positive and negative ion measurements were performed at the same time. Since
some peaks appeared only in either ion mode, the positive and negative ions were separately analyzed. Increased
numbers of hydrophilic metabolites were 3874 and 962, those of lipids in the positive ion mode (lipid-positive)
were 625 and 105, and those of lipids in the negative ion mode (lipid-negative) were 172 and 41, in 280-2d and
310-2d, respectively. Decreased numbers of hydrophilic metabolites were 2189 and 1407, those of lipid-positive
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Figure 3. Metabolic responses in Arabidopsis to 280 and 310 nm UV- LED irradiation. Welch’s t-test was
applied for comparison of UV-irradiated samples with control, and metabolite with a P-value less than 0.05 was
considered significantly changed. The annotated metabolites are shown in squares and the degrees of changes
are visualized by the colors: red, increased by UV-LED irradiation; blue, decreased by UV-LED irradiation; gray,
not significantly changed (P>0.05).

were 890 and 207, and those of lipid-negative were 263 and 85, in 280-2d and 310-2d, respectively (Fig. 2b,
Supplementary Tables S12, S13 and S14). Again, it was shown that changes in metabolic profiles under 280
and 310 nm UV-LED irradiation were not fully overlapped. The numbers of specifically increased hydrophilic
metabolites were 3318 and 406, those of lipid-positive were 591 and 71, and those of lipid-negative were 163
and 32, in 280-2d and 310-2d, respectively, and numbers of specifically decreased hydrophilic metabolites were
1388 and 606, those of lipid-positive were 759 and 76, and those of lipid-negative were 214 and 36, in 280-2d
and 310-2d, respectively (Fig. 2¢c, Supplementary Tables S12, S13 and S14).

Among them, annotated metabolites registered in the metabolic pathway in Arabidopsis in KEGG are shown
in the metabolic map in Fig. 3. For example, metabolites in the TCA cycle and fatty acid biosynthesis, such as
dodecanoic acid, decanoic acid, and octanoic acid, were increased more than two-fold in 280-2d in compari-
son with the control. On the other hand, metabolites in glucosinolate biosynthesis, such as glucoiberverin and
glucoerucin, and glutathione metabolism, y-L-glutamyl-L-cysteine, were decreased more than two-fold in 280-
2d. Metabolites in glucosinolate biosynthesis, glucobrassicin, and phenylpropanoid biosynthesis, ferulate, were
decreased more than two-fold in 310-2d. Identified lipids were further classified according to LIPID MAPS*
and the method described by Murphy?!. It was shown that, in 280-2d, 17 lipids in ceramide (Cer) were charac-
teristically increased, whereas 14 in phosphatidylethanolamine (PE), and 19 in triglyceride (TG) were decreased.

280 nm specific activation of lipid, polyamine metabolism and TCA cycle. Since the expression
of genes related to lipid metabolism (Fig. 1c) and the amounts of lipids were specifically increased or decreased
under 280 nm UV-LED irradiation (Fig. 3 and Table 1), the expression of genes involved in lipid metabolism
was extracted from the transcriptomic data. Metabolome analysis showed that, in 280-2d, lipids in Cer were
increased, whereas those in PE were decreased (Table 1). Cer is synthesized by Cer synthases catalyzing the
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Increased Decreased

Group Lipid class | 280-2d specific | 310-2d specific | common | 280-2d specific | 310-2d specific | Common
AcHexChE |1 - - - - -
AcHexCmE | 6 - - - - -
AcHexSiE 2 - - - - -
Neutral lipids AcHexZyE | - - - 1 - -
CmE - - - 2 - -
DG 2 - - - - -
TG 13 1 1 19 4 7
PA - - - - - 1
PC - - - 1 - -
PE 4 - - 14 - 1
Phospholipids PG 3 1 3 - -
PI 2 - - 3 - -
PIP2 - - - - - 1
PS 2 1 - 9 - -
. . Cer 17 1 3 - -
Sphingolipids HoxlCor 5 - - 1 - -
Derivatized lipids BisMePA - - - 1 2 2
Glycoglycerolipid MGDG - - - 3 - -
E;tltjys acyl and other Co 1 B B B _ B

Table 1. Classification of identified lipids whose amounts were significantly changed by UV-LED

irradiation. Welch’s ¢-test was performed to determine significant differences (P <0.05) between

the control and UV-LED irradiated Arabidopsis. AcHexChE AcylGlcCholesterol ester, AcHexCmE
AcylGlcCampesterol ester, AcHexSiE AcylGlcSitosterol ester, AcHexZyE AcylGlcZymosterol ester, CmE
campesterol ester, DG diglyceride, TG triglyceride, PA phosphatidic acid, PC phosphatidylcholine, PE
phosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol, PIP2 phosphatidylinositol, PS
phosphatidylserine, Cer Ceramides, HexICer simple Glc series, BisMePA bis-methyl phosphatidic acid, MGDG
monogalactosyldiacylglycerol, Co coenzyme.

condensation of sphingoid bases and coenayme A (CoA)-activated fatty acids (Fig. 4a). We assumed that the
decreases of lipids in PE were due to their degradation. PE is hydrolyzed by phospholipase D (PLD) (Fig. 4b)*>*.
Hence, gene expression of Cer synthases and PLDs was focused on. In addition, the relationship between the
Cer metabolism and the hypersensitive response (HR)-type PCD has been shown®?**. Therefore, expression of
HR-type PCD genes was also focused on. Gene expression of a member of Cer synthases, LOH2 (Fig. 4c), and
four PLDs, PLP{2, PLDf32, PLDy3, and PLDy]I (Fig. 4d), were significantly increased in 280-2d together with five
PCD markers, FLAVIN-DEPENDENT MONO-OXYGENASEI (FMO1), peroxidase C (PRXc), SENESCENCE-
ASSOCIATED GENE 13 (SAG13), and pathogenesis-related 2 and 3 (PR2, PR3) (Fig. 4e). This gene expression
profile corresponds well with the metabolome data.

Spermidine (Spd) and y-aminobutyric acid (GABA), which are produced from polyamine biosynthesis and
catabolism, respectively, were also specifically increased in 280-2d. (Fig. 3 and Supplementary Table S11). In
accordance with the metabolic change, genes involved in polyamine metabolism, polyamine oxidases, PAO2,
PAO3, and PAO4, spermidine synthase, SPDS3, aldehyde dehyrogenases, ALDH2B7 and ALDH3H1, and glutamic
acid decarboxylase, GADI, were up-regulated in 280-2d (Fig. 5). Similarly, up-regulation of most of the genes
involved in the TCA cycle, citrate synthase CSY4, isocitrate dehydrogenase, IDHG, the E; subunit of 2-oxogu-
latarate dehydrogenase complex, EI-OGDH], the E, subunits of 2-oxogulatarate (a-ketoglutarate) dehydroge-
nase complex, KGDHE?2 and At4¢26910, dihydrolipoyl dehydrogenase, LPD2, succinyl CoA ligase a-subunit,
At5g08300, succinate dehydroganases, SDHI-1, SDH2-1, and SDH2-2, fumarase, FUM2, and mitochondrial
malate dehydrogenase, mMDH?2, in 280-2d were confirmed (Fig. 6).

Effect of narrowband UV-B on flavonoid biosynthesis. The amounts of shikimic acid and phenylala-
nine, precursors of flavonoids, were specifically increased in 280-2d (Fig. 3). However, contrary to previous stud-
ies using BB UV-B lamps, flavonoids were not increased under NB UV-B. Moreover, ferulic acid, leucodelphini-
din, and kaempferol 3-glucoside were decreased under NB UV-B instead of increasing (Fig. 3). Since a GO term
’phenylpropanoid biosynthesis’ was enriched in DEGs in 280-2d, we focused on the gene expression of typical
enzymes involved in flavonoid biosynthesis, ADT6, PAL1, C4H, CHS, CHII, F3H, DFRA, LDOX and UGT75Cl,
which is one of AGTs (Fig. 7a,b). We also focused on the gene expression of transcription factors such as HY5,
which is a key component in the UVRS signaling pathway, HYH, a homologue of HY5, MEDs, and members in
MBW complexes (MYBs, EGL3, GL3, TTG1, and TT8), which are involved in flavonoid biosynthesis (Fig. 7¢).
Unexpectedly, the expression of genes involved in flavonoid biosynthesis was down-regulated immediately after
NB UV-B irradiation (Fig. 7b). Then, expression of ADT6, PALI, and C4H, involved in upstream phenylpro-
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Figure 4. Gene expression profiles of Cer synthase, PLDs, and markers in HR-type PCD under 280 and 310 nm
UV-LEDs. (a) Metabolic map of Cer biosynthesis. LCB, long-chain base; FA, Fatty acid, VLC, very-long-chain.
(b) Metabolic map of PE hydrolysis. (c) Heat map showing the expression level of LOH2. (d) Heat map showing
the expression level of the PLDs. (e) Heat map showing the expression level of HR-type PCD marker genes.
Changes in gene expression levels relative to the control are expressed as log, (fold change) values. As shown on
the color scale, blue indicates down-regulation and red indicates up-regulation. Asterisks indicate significant
differences between the control and UV-LED irradiation using Welch’s t-test (P <0.05).
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Figure 5. Gene expression profiles of enzymes in polyamine metabolism and GABA biosynthesis under 280
and 310 nm UV-LEDs. (a) Metabolic map of polyamine metabolism and GABA biosynthesis. (b) Heat map
showing the expression level of enzymatic genes in polyamine metabolism and GABA biosynthesis. Changes in
gene expression levels relative to the control are expressed as log, (fold change) values. As shown on the color
scale, blue indicates down-regulation and red indicates up-regulation. Asterisks indicate significant differences
between the control and UV-LED irradiation using Welch’s t-test (P<0.05).

panoid biosynthesis, was specifically increased in 280-2d, whereas expression of DFR, LDOX, and UGT75CI,
involved in downstream anthocyanin biosynthesis was specifically decreased in 310-2d (Fig. 7b). A significant
increase in gene expression of transcription factors, HY5, ATMYBL2 and TTGI, and a decrease of MED33A
and MYB4 were observed in both 280-0d and 310-0d (Fig. 7c). The expression patterns of other transcription
factors, except for MYB11 and MYBI111, also showed similar tendencies in both 280-0d and 310-0d. However,
after two days incubation in the dark, expression of MYB13, GL3, MYB4, MYB7 were significantly up-regulated,
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Figure 6. Gene expression profiles of enzymes in TCA cycle under 280 and 310 nm UV-LEDs. (a) Metabolic
map of TCA cycle. (b) Heat map showing the expression level of enzymatic genes in TCA cycle. Changes in
gene expression levels relative to the control are expressed as log, (fold change) values. As shown on the color
scale, blue indicates down-regulation and red indicates up-regulation. Asterisks indicate significant differences
between the control and UV-LED irradiation using Welch’s ¢-test (P<0.05).

and MYBL2 expression was down-regulated only in 280-2d. On the other hand, no expression difference was
confirmed in 310-2d as compared with the control C-2d.

Response of gene expression to different doses of 280 nm UV-LED irradiation. The expression
of genes involved in GABA metabolism showed 280 nm specific responses (Figs. 3 and 5). The dependence
of the gene expression on UVR8 was investigated by real-time quantitative PCR (RT-qPCR) in a transgenic
Arabidopsis, UVR8 overexpression line 11-6 and a CRISPR/Cas9 edited uvr8 mutant line 4-38 (Supplementary
Fig. S2). Although the expression levels of GADI, ALDH2B7, and ALDH3H] did not increase significantly under
different doses of 280 nm UV-LED irradiation, they tended to increase when 280 nm UV-LED irradiation dose
was higher than 2.5 umol m™ s™! (Fig. 8). This phenomenon was observed in wild type, 11-6, and 4-38 and no
differences were observed among lines.

Discussion

Many studies have been conducted on the responses of plants to UV-B, but few studies have been conducted on
the effect of each wavelength within the UV-B. Here, it was confirmed that the numbers of DEGs and increased
or decreased metabolites were significantly lower under 310 nm UV-LED irradiation than under 280 nm UV-
LED irradiation. HY5 regulates the expression of half of UVR8-regulated genes including defense-related and
flavonoid biosynthetic ones'*!'. Here, we found that the responses to 280 and 310 nm UV-LED irradiation were
inconsistent with each other even though HY5, a key transcription factor in UVRS8 signaling, was induced by both
UV-LEDs (Figs. 1, 2, 3, 4, 5, 6, 7). These results are consistent with the previous report by Ulm et al. showing that
the signaling pathway is different between long-wavelength UV-B and short-wavelength UV-B’. Most of the stud-
ies including that by Ulm et al.” on UV-B responses so far used BB UV-B lamps, which have a peak wavelength
around 310 nm"*™'S. Since BB UV-B lamps contain a wide range of wavelengths, there is a possibility that the
observed phenomena in the previous studies were caused by the interaction of multiple light signaling pathways.

It is well known that UVB-induced responses include UVRS8 signaling and stress responses. UVR8 is highly
sensitive to 280 nm but less to 310 nm as indicated by in vitro monomerization'!. There were actually few genes
with low g-values under 310 nm irradiation, indicating the Arabidopsis response to 310 nm is weak (Supple-
mentary Tables S2 and S4). In Arabidopsis seeds, phytochrome A (phyA) signaling has been shown to induce
germination under a wide range of wavelengths from 300 to 780 nm™. It is known that phyA also inactivates the
COP1/SUPPRESSOR OF PHYA-105 complex, leading to the rapid accumulation of transcription factors such
as HY5*7*, LONG HYPOCOTYL IN FAR-RED1 (HFR1), which acts in phyA signaling, has been shown to be
stabilized under UV-B**’. In our experiment, only 310 nm UV-LEDs induced the expression of HFRI (Sup-
plementary Table S6). Therefore, phyA signaling may be involved in the induction of HY5 by 310 nm UV-LED
irradiation. It is also possible that other photoreceptors, such as phyB and CRYs, which absorb 310 nm, were
activated by 310 nm UV-LED irradiation. Further research using each photoreceptor mutant is required to dis-
sect the different responses under 280 and 310 nm UV-LED irradiation.

Irradiation of Arabidopsis with UV-B has been reported to induce salicylic acid and jasmonic acid associated
and defense-related genes'***2 Jasmonic acid is biosynthesized from a-linolenic acid®’. Here, we confirmed that
DEGs in Arabidopsis with 280 nm UV-LED irradiation showed enriched defense responses, including those to
biotic and abiotic responses, responses to salicylic acid and jasmonic acid, and a-linolenic acid metabolic path-
ways. On the other hand, 310 nm UV-LED irradiation did not enrich these terms, but rather down-regulated
‘response to salicylic acid’ (Fig. 1 and Supplementary Table S8). The results indicate that stress responses are
induced by short wavelengths in UV-B below 310 nm. Previously, it was shown that UVR8 dependent defense
responses against Botrytis cinerea were retarded even in jasmonate signaling mutants, jarI-1 and P35S:JAZ10.4*.
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Figure 7. Gene expression profiles of enzymes and transcription factors involved in flavonoid biosynthesis
under 280 and 310 nm UV-LEDs. (a) Metabolic map of flavonoid GABA biosynthesis. (b) Heat map showing
the expression level of enzymatic genes in flavonoid biosynthesis. (c) Heat map showing the expression level
of transcription factors in flavonoid biosynthesis. Changes in gene expression levels relative to the control are
expressed as log, (fold change) values. As shown on the color scale, blue indicates down-regulation and red
indicates up-regulation. Asterisks indicate significant differences between the control and UV-LED irradiation
using Welchs t-test (*P<0.05). ND, not detected.

On the other hand, mitogen-activated protein kinase (MAPK) signaling pathway involved in an environmental
stress response was shown to be UVR8 independent*®. Accordingly, the signaling pathway that induced the
280 nm specific stress responses in this study remain to be uncovered.

Irradiation of peach skin with UV-B changed the amounts of certain lipids*. NB UV-B LED irradiation of
Arabidopsis also changed the amounts of certain lipids, and 280 nm UV-LED irradiation induced a characteris-
tic change of the lipid profile as an increase in Cer and decreases in PE and TG (Table 1). Cer is synthesized by
ceramide synthase, LOH1, LOH2, and LOH3 in Arabidopsis*’. Overexpression of LOHs affected Arabidopsis
growth, and HR-type PCD marker genes have been shown to be up-regulated in the LOH2 overexpressing strain
of Arabidopsis®. In this study, the expression of LOH2 and HR type PCD marker genes, FMO, PRXc, SAG13,
PR2, and PR3, were increased by 280 nm-UV LED irradiation (Fig. 4c,e). PCD was induced in UV-B treated
BY-2 tobacco cells*®. Our results might explain one of the mechanisms involved in PCD induction through
up-regulation of LOH2 by UV-B. Multiple photoreceptor signaling pathways including UVR8-dependent and
-independent pathways have also been proposed for PCD*. Utilization of NB UV-LED in future molecular
genetic studies will promote our understanding of mechanisms in PCD induction by UV-B.

Phosphatidylethanolamine is a group of phospholipids, which is the major constituent of cell membranes.
Phosphatidylethanolamine is known to be hydrolyzed by phospholipase D (PLD)***. Our result showed that
the gene expression of enzymes hydrolyzing PE, PLP(2, PLDf32, PLDy3, and PLDyI, were increased by 280 nm
UV-LED irradiation (Fig. 4d). This might be the reason for the specific decrease in PE by 280 nm UV-LED
irradiation. Phosphatidic acid produced by hydrolysis of PE plays an important role in the stress response of
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Figure 8. Effect of 280 nm UV-LED irradiation of Arabidopsis plants at different dose on expression of genes
involved in GABA metabolism. Fourteen-day-old Arabidopsis plants were used for RT-qPCR analysis. The
expression of genes involved in GABA metabolism in Arabidopsis plants irradiated by 280 nm UV-LED at 0.5,
2.5,and 4.5 pmol m™2 s™! was analyzed by RT-qPCR. Col-0 without irradiation and dark storage was used as

a control to compare the expression levels. The data are presented as means of three biological replicates with
error bars showing SDs. Welch’s ¢-test was applied to the comparison between the control and other samples,
and no significant difference was observed (P-value <0.05). WT, wild type; UVRS8, UVRS8 overexpression line
11-6; uvr8, uvr8 mutant line 4-38.

plants®!. Decreased PE and up-regulation of the hydrolyzing enzyme gene are also stress responses specifically
induced by 280 nm UV-LED irradiation. The decreases of lipids were also found in TG (Table 1). Triglyceride is
used as an energy source through glycolysis and the TCA cycle®. The increase of organic acids in the TCA cycle
discussed below and fatty acid may be due to the degradation of TG (Fig. 3).

Polyamines and GABA are induced in the responses to various stresses, including UV, and exhibit cytopro-
tective effects'®**-. Here, we also found that 280 nm UV-LED irradiation specifically increased the polyamine,
SPD, and GABA (Fig. 3 and Supplementary Table S11). Homeostasis of polyamines is regulated by the dynamic
balance of biosynthesis and catabolism. Biosynthesis is catalyzed by arginine decarboxylase (ADC), agmatine
iminohydrolase (AIH), N-carbamoylputrescine amidohydrolase (CPA), spermidine synthase (SPDS), spermine
synthase (SPMS) and thermospermine synthase (ACL5). Catabolism involves two types of enzymes. One is
copper-dependent diamine oxidase (DAO) and the other is flavin adenine diamine (FAD)-dependent PAQ>"%,
As a result of transcriptome analysis, expression of catabolic genes, PAOs, was induced by 280 nm UV-LED
irradiation (Fig. 3b). It has been shown that polyamines of higher molecular weight, including spermine and
Spd, are subjected to PAO-mediated catabolism when their levels increase beyond a threshold®. We found that
ADCI (AT2G16500) was also up-regulated under 280 nm UV-LED irradiation (Supplementary Tables S1 and
$2), so there is a possibility that polyamine biosynthesis was activated under 280 nm UV-LED irradiation, and
the polyamine exceeded the threshold for induction of PAO expression. Elucidation of precise mechanisms of
Spd increase needs further investigation. 4-Aminobutanal generated by the terminal catabolism of polyamines
is then converted to GABA by ALDHs®*¢!. GABA is also synthesized from glutamic acid by glutamate decar-
boxylase (GAD)*>%2. As a result of transcriptome analysis, both GAD and ALDH were increased (Fig. 5b). To
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clarify the relationship between the GAD and ALDH expression and UVRS signaling, gene expression analysis
of GAD and ALDH by 280 nm UV-LED irradiation was performed by RT-qPCR using UVR8 overexpression and
uvr8 mutant. The results showed that the expression of GAD and ALDH tended to increase by 280 nm UV-LED
irradiation more than 2.5 umol m~ s7, regardless of wild type or transgenic Arabidopsis (Fig. 8), indicating that
the increase in the expression of GAD and ALDH is due to signaling not involving UVRS. Since genes involved
in stress response were increased in GO analysis (Fig. 1¢), increase of GABA might be a UVR8-independent
stress response.

It was shown that UV-B irradiation increased the amounts of metabolites in the first half of the TCA cycle and
expression of most of the enzymatic genes in the TCA cycle'®. Regarding metabolites, not only citrate, aconitate,
and 2-oxoglutarate in the first half of the TCA cycle, but also succinate, fumarate, and malate in the second half
increased under 280 nm UV-LED irradiation (Fig. 3). As well as the metabolome, the transcriptome in 280-2d
showed specific changes (Fig. 6b). On the other hand, our results showed that 310 nm UV-LED irradiation
did not affect the metabolites in the TCA cycle. The difference in the effects of 280 and 310 nm on the central
metabolism was also confirmed using NB UV-B LEDs.

UV-B stimulates the expression of genes encoding enzymes involved in the anthocyanin biosynthetic path-
way in Arabidopsis®. UV-B is sensed by the photoreceptor UVRS, which activates the transcription factor HY5;
then, HY5 up-regulates the expression of the transcription factors that control the biosynthesis of flavonoids and
anthocyanins'**-%, In addition, it has been shown that UVRS binds directly to the transcription factor MYB13
regulating flavonoid biosynthesis in a UV-B-dependent manner®®. Among the members in MBW complexes, at
least MYBI12, MYBI111, MYB75, MYB13 and GL3 have been shown to be induced by UV-B!#26636466 Tn this study
HY5, MYBL2, and TTG1 were significantly up-regulated, and HYH and MYBI2 also tended to be up-regulated
by both 280 and 310 nm UV-LED irradiation. MYB4, a repressor of flavonoid biosynthesis, was also commonly
down-regulated under irradiation by both UV-LEDs (Fig. 7c). However, other transcription factors were not
affected by NB UV-LED irradiation. MYBL2 is also a repressor of flavonoid biosynthesis, which suppresses
the expression of F3H, DFR, LDOX, GL3, TT8 and MYB75, and is negatively regulated by strong light®’. The
AtGenExpress global stress expression data show that MYBL2 expression is induced by abiotic stresses including
UV-B%, Here, we confirmed the up-regulation of MYBL2 by NB UV-B irradiation (Fig. 7c). The expression of
F3H, DFR, LDOX, GL3, and TT8, showed a decreasing tendency, which is considered to be due to the influence
of MYBL2 (Fig. 7b,c). MYB4 suppresses the expression of C4H. In our experiments, expression of MYB4 was
reduced by both 280 and 310 nm UV-LED irradiation, but expression of C4H, together with ADT6 and PAL, was
increased only by 280 nm irradiation (Fig. 7b,c). There was no significant difference in the expression of MYBI3,
MYBI11 and MYBI11, but interestingly they showed the opposite behavior under 280 and 310 nm UV-LED irra-
diation (Fig. 7c). After all, NB UV-LED irradiation could induce only upstream phenylpropanoid biosynthesis
but not downstream flavonoid and anthocyanin biosynthesis. The phenomena reported in previous studies with
BB UV-B lamps may have been induced by multiple signal transductions, as shown by the inconsistent gene
expression profiles of members in MBW complexes under 280 and 310 nm UV-LED irradiation in this study.

In conclusion, our study revealed that the responsivenesses of Arabidopsis to 280 and 310 nm UV-B were
significantly different, and Arabidopsis distinguished 280 and 310 nm UV-B. It is considered that the phenomena
confirmed in the previous experiments using BB UV-B lamps were induced by the multiple signal transductions
generated by several wavelengths in UV-B. In addition, 280 nm UV-LED irradiation at 2.5 pmol m™s™' tended to
increase the expression of genes involved in GABA-metabolism, which were also increased in the uvr8 mutant.
Therefore, the response to 280 nm UV-LED irradiation at 2.5 umol m™ s™' may induced through multiple signals:
one is mediated by UVRS and the others induce UVR8-independent stress responses. Utilization of NB UV-LEDs
will lead to new insights into the plant UV-B responses.

Methods

Plant materials and growth conditions. All local, national or international guidelines and legislation
were adhered to in the production of this study. Seeds of wild type accession of Arabidopsis thaliana Colum-
bia (Col-0) were obtained from the Arabidopsis Biological Resource Center (ABRC; https://abrc.osu.edu/).
Seeds of Arabidopsis, Col-0, UVR8 overexpression line 11-6, and uvr8 mutant line 4-38, were sterilized with
0.5% sodium hypochlorite and 0.02% (w/v) Triton-X100 and cultured on half strength Murashige and Skoog
medium (pH 6.0) containing 100 mg ™! myo-inositol, 0.1 mg ™! thiamin hydrochloride, 0.5 mg 1"! nicotinic
acid, 0.5 mg 1™ pyridoxine, 2 mg ™! glycine, 1% sucrose and 0.8% agar in a growth chamber at 23 °C with a 16-h
light/8-h dark photoperiod for 14 days.

UV-B treatment. Fourteen-day-old Arabidopsis seedlings were kept under LED light with a peak wave-
length of 280 nm and a half-bandwidth of 10 nm (NCSU234BU280, Nichia, Tokushima, Japan) or LED light
with a peak wavelength of 310 nm and a half-bandwidth of 10 nm (NCSU234BU310, Nichia) for 45 min, and
were kept at 23 °C for two days in the dark. Arabidopsis was irradiated by UV-LED at 2.5 umol m™ s™ for tran-
scriptome and metabolome analysis and at 0.5, 2.5, and 4.5 pmol m™2 s! for RT-qPCR analysis.

RNA-sequencing. RNA extraction and transcriptome analysis were conducted at Takara Bio, Shiga, Japan.
Briefly, total RNA was extracted from approximately 100 mg fresh weight (FW) of Arabidopsis shoots using
NucleoSpin RNA Plant (Takara Bio) according to the manufacturer’s instructions. Three biological replicates
for each treatment were used for analysis. RNA amplification was done using SMART-Seq v4 Ultra Low Input
RNA Kit for Sequencing (Illumina, San Diego, CA, USA). A DNA library was prepared using the Nextera XT
DNA Sample Preparation Kit (Illumina). RNA-Seq was performed using NovaSeq system (Illumina), and the
obtained nucleotide sequences were mapped to the Arabidopsis genome sequence (TAIR 10.46) using STAR
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version 2.6.0c”!. Then, gene expression levels were estimated as transcripts per million (TPM) using Genedata
Profiler Genome version 13.0.11 (Genedata, Basel, Switzerland).

Identification and enrichment analysis of DEGs. A statistical comparison of TPM was performed
using Microsoft Excel to select DEGs between control and UV-LED irradiated samples. The data were presented
as means (n=3), and Welch’s ¢-test was applied to detect significant differences. A gene with a P-value less than
0.05 and a difference more than two-fold was considered as a DEG. The g-value was obtained by the Benjamini-
Hochberg method. To identify the most significant gene sets associated with GO and KEGG pathways, enrich-
ment analysis of DEGs was performed using DAVID (http://david.abcc.ncifcrf.gov)*%.

Profiling of hydrophilic metabolites using GC—MS.  Metabolite extraction and metabolome analysis
were conducted at Kazusa DNA Research Institute, Chiba, Japan. Briefly, 50 mg FW of Arabidopsis shoots were
extracted with 75-80% methanol, loaded on a MonoSpin C18 column (GL Science, Tokyo, Japan), and eluted
with 70% methanol. Methoxyamine and pyridine were added to the obtained fraction for methoximation, and
then N-methyl-N-(trimethylsilyl)trifluoroacetamide was added for trimethylsilylation. Three biological repli-
cates for each treatment were used for analysis. The analysis was performed using a gas chromatograph-quad-
rupole mass spectrometer, QP2010 Ultra (Shimadzu, Kyoto, Japan), with an auto sampler AOC-5000 Plus (Shi-
madzu). Chromatographic separation was achieved using a DB-5 column (inner diameter, 0.25 mm x 30 m and
film thickness, 1.00 um, Agilent Technologies, Wilmingston, NC, USA). The carrier gas was helium at a flow rate
of 1.1 ml min™". The injection temperature was 280 °C, and the injection volume was 0.5 pl. The temperature
program was isothermal for 4 min at 100 °C, and was then raised at a rate of 4 °C min™! to 320 °C and held for
8 min. The transfer line temperature, ion source temperature and scan speed were set to 280 °C, 200 °C and 2000
unit s}, respectively. Data acquisition was performed in the mass range of 45 to 600 m/z. The obtained data was
analyzed using the GCMSsolution software (Shimadzu) and the GC/MS metabolic component database Ver.2
(Shimadzu).

Profiling of fatty acids using GC-MS. Metabolite extraction and metabolome analysis were conducted
at Kazusa DNA Research Institute. Briefly, 50 mg FW of Arabidopsis shoots were extracted with 650 pl of metha-
nol/methyl tert-butyl ether, 3:10, 125 pl of ultrapure water was added, and the methyl tert-butyl ether fraction
was collected. After adding 10% boron trifluoride methanol to the obtained fraction for methyl esterification,
ultrapure water and hexane were added, and then a hexane fraction was analyzed. Three biological replicates for
each treatment were used for analysis. The analysis was performed using a QP2010 Ultra (Shimadzu) with an
auto sampler AOC-5000 Plus (Shimadzu). Chromatographic separation was achieved using a DB-5 ms column
(inner diameter, 0.25 mm x 30 m and film thickness, 0.25 pm, Agilent Technologies). The carrier gas was helium
at a flow rate of 1.1 ml min~!. The injection temperature was 280 °C, and the injection volume was 0.5 pl. The
temperature program was isothermal for 2 min at 40 °C, and was then raised at a rate of 6 °C min ™" to 320 °C and
held for 5 min. The transfer line temperature, ion source temperature and scan speed were set to 280 °C, 200 °C
and 2500 unit s, respectively. Data acquisition was performed in the mass range of 45 to 500 m/z. The analysis
of the obtained data is same as described above.

Profiling of hydrophilic metabolites using LC-MS. Metabolite extraction and metabolome analysis
were conducted at Kazusa DNA Research Institute. Briefly, 100 mg FW of Arabidopsis shoots were extracted
with 75% methanol, loaded on a MonoSpin C18 column (GL Science), and eluted with 75% methanol. Three
biological replicates for each treatment were used for analysis. The analysis was performed using a high-perfor-
mance liquid chromatography (HPLC) Ultimate 3000 RSLC (Thermo Fisher Scientific, Waltham, MA, USA)
coupled with a high-resolution mass spectrometer Q Exactive (Thermo Fisher Scientific) with electrospray ioni-
zation (ESI) in the positive mode. Chromatographic separation was achieved using an Inert Sustain AQ-C18
column (2.1 mm x 150 mm, 3 pum-particle, GL Science). The column was kept at 40 °C, and the flow rate was
0.2 ml min~". The mobile phase solutions were water with 0.1% formic acid (eluent A) and acetonitrile (eluent B)
and were implemented in the following gradient: 0-3 min, 2% B; and 3-30 min, 2-98% B. The injection volume
was 2 pl. Mass spectrometry conditions were as follows: the scan range was set at m/z 80-1200. The full scan
resolution was 70,000. The MS/MS scan resolution was 17,500. The obtained data was analyzed using a Prote-
oWizard (http://proteowizard.sourceforge.net) and a PowerGetBatch (Kazusa DNA Research Inst.). Then, the
KEGG database (http://www.genome.jp/kegg/) was used to annotate the metabolites.

Profiling of lipids using LC-MS. Metabolite extraction and metabolome analysis were conducted at
Kazusa DNA Research Institute. Briefly, 100 mg FW of Arabidopsis shoots were extracted with 650 pl of metha-
nol/methyl tert-butyl ether, 3:10, 125 pl of ultrapure water was added, and the methyl tert-butyl ether fraction
was collected. Three biological replicates for each treatment were used for analysis. The analysis was performed
using an Ultimate 3000 RSLC (Thermo Fisher Scientific) coupled with a Q Exactive (Thermo Fisher Scientific)
with ESI in the positive or negative mode. Chromatographic separation was achieved using a SunShell C18
column (2.1 mm x 150 mm, 2.6 um-particle, ChromaNik Technologies, Osaka, Japan). The column was kept at
40 °C, and the flow rate was 0.2 ml min'. The mobile phase solutions were acetonitrile/water (60:40 v/v) (eluent
A) and 2-propanol/acetonitrile (90:10 v/v) (eluent B), both containing 0.1% formic acid and 10 mM ammo-
nium formate and were implemented in the following gradients: 0-10 min, 30-35% B; 10-20 min, 35-55% B;
20-35 min, 55-65% B; 35-45 min, 65-100% B; and 45-50 min, 100% B. The injection volume was 2 ul. Mass
spectrometry conditions were the same as described above. The obtained data was analyzed using a ProteoWiz-
ard, a PowerGetBatch (Kazusa DNA Research Inst.) and a Lipid Search (Mitsui Knowledge Industry Co., Ltd.,
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Tokyo, Japan). Lipid classification was performed by Lipid Search according to the LIPID MAPS (https://www.
lipidmaps.org/)*® and the method of Murphy?! described previously’?, and the MS/MS spectrum was compared
with the lipid spectrum registered in the Lipid Search database. Some of the detected peaks had the same reten-
tion time in the positive and negative modes. In that case, the one with the larger peak area was selected.

Statistical analysis for metabolite profiling. Differences between the relative quantity of metabolites
were evaluated using Welch’s ¢-test. The data were presented as the means (n=3), and P-values less than 0.05
were considered statistically significant. The g-value was obtained by the Benjamini-Hochberg method.

Construction of vectors. To generate a UVRS overexpression line, the pEX-K4]J1 plasmid with synthetic
UVR8 coding sequence was obtained from Eurofins Genomics (Tokyo, Japan). Then, UVR8 was inserted into the
Ndel-Sacl site of the binary vector pRI201-AN (Takara Bio). To generate a uvr8 mutant, we used the CRISPR/
Cas9 system. Two guide RNAs were designed using the web tool CasOT”* and sgRNA Designer (https://porta
Is.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) to generate a approximately 50-bp deletion in the
first exon of UVR8 and amplified by PCR using primer sets and subsequently inserted into the Bsal site of
pMgP237-2A-GFP, a vector provided by Keishi Osakabe at Tokushima University, using the Golden Gate clon-
ing method. The primers used are shown in Supplementary Table S15. Each vector was introduced into Agrobac-
terium tumefaciens GV3101 using electroporation.

Plant transformation. Agrobacterium-mediated transformation was carried out on Arabidopsis using
the floral inoculation method”. Overexpression lines were screened on half MS medium containing 50 mg 17!
kanamycin. T, seeds with 3:1 segregation were selected, from which homozygous T; seeds were collected and
used in this experiment. For mutant lines, T, seeds were screened on half MS medium containing 50 mg 1!
kanamycin, and the gene editing status of T, and T, plants was examined by amplifying and sequencing the
genomic sequence of UVRS. Tj; seeds collected from homozygous T, plants with edited UVR8 were used in this
experiment.

RT-qPCR. The aerial parts were collected from three seedlings immediately after UV-B treatment and from
seedlings stored in the dark for two days after UV-B treatment, frozen in liquid nitrogen, and stored at— 80 °C for
RT-qPCR analysis. Three biological replicates for each treatment were used for analysis. Total RNA was isolated
using TRizol reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. RNA samples were
DNase treated using RNase-Free DNase Set (Qiagen, Hilden, NRW, German) according to the manufacturer’s
protocol. RNA quantity and quality were checked by BioSpec nano (Shimadzu), and cDNA was synthesized
from 500 ng of RNA using PrimeScript RT-PCR Kit (Takara) according to the manufacturer’s protocol. Mic
qPCR Cycler (Upper Coomera, QLD, Australia) was used for RT-qPCR, and amplification was performed with
the following settings: initial denaturation at 95 °C for 5 min, followed by 40 cycles at 95 °C for 5 s, 60 °C for
10 s and 72 °C for 30 s, and temperature was raised to 95 °C at 0.3 °C s'. Each reaction (20 pl) contained 1 pl of
cDNA, 0.4 pl of each primer (10 uM), 10 pl of KAPA SYBR FAST qPCR Master Mix (2x) Universal (KAPA Bio-
system, Wilmington, MA, U.S.A.), and 8.2 pl of sterile water. The primers used are shown in the Supplementary
Table S15. Arabidopsis UBC9 was used as a housekeeping gene, and relative expression levels were calculated
based on the 2744¢T method™.

Data availability

RNA-seq data were deposited in the DDBJ Sequence Read Archive (https://www.ddbj.nig.ac.jp/dra/index.html),
under accession number of DRA011512. Metabolomics data were submitted to MetaboLights (https://www.ebi.
ac.uk/metabolights/)”¢, under study ID MTBLS2461.
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